Blind Source Separation and Independent Component Analysis: A Review

نویسندگان

  • Seungjin Choi
  • Andrzej Cichocki
چکیده

Blind source separation (BSS) and independent component analysis (ICA) are generally based on a wide class of unsupervised learning algorithms and they found potential applications in many areas from engineering to neuroscience. A recent trend in BSS is to consider problems in the framework of matrix factorization or more general signals decomposition with probabilistic generative and tree structured graphical models and exploit a priori knowledge about true nature and structure of latent (hidden) variables or sources such as spatio-temporal decorrelation, statistical independence, sparseness, smoothness or lowest complexity in the sense e.g., of best predictability. The possible goal of such decomposition can be considered as the estimation of sources not necessary statistically independent and parameters of a mixing system or more generally as finding a new reduced or hierarchical and structured representation for the observed (sensor) data that can be interpreted as physically meaningful coding or blind source estimation. The key issue is to find a such transformation or coding (linear or nonlinear) which has true physical meaning and interpretation. We present a review of BSS and ICA, including various algorithms for static and dynamic models and their applications. The paper mainly consists of three parts: (1) BSS algorithms for static models (instantaneous mixtures); (2) extension of BSS and ICA incorporating with sparseness or non-negativity constraints; (3) BSS algorithms for dynamic models (convolutive mixtures).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of Leakage in Water Supply Network Based on Blind Source Separation Theory

The economic and environmental losses due to serious leakage in the urban water supply network have increased the effort to control the water leakage. However, current methods for leakage estimation are inaccurate leading to the development of ineffective leakage controls. Therefore, this study proposes a method based on the blind source separation theory (BSS) to calculate the leakage of water...

متن کامل

Blind Signal Separation Algorithm with Independent Component Analysis (ICA) by Means of Neural Training: Design and Development with Newer Approaches

Independent Component Analysis (ICA) and its mathematical ideas are presented for the problem of Blind Signal Separation (BSS) and multichannel blind deconvolution of independent source signals. BSS and ICA are emerging techniques that aspire to recover unobserved signals or sources from the observed mixtures. The aims of this paper are to review some new approaches and implement some new and u...

متن کامل

Neural Codes and Independent Component Analysis: Information Theoretic Approach and Conditions on Cumulants

In this contribution we review recent results obtained on blind source separation (BSS) and independent component analysis (ICA). In particular we show that maximi-sation of mutual information can lead to ICA, and we present new conditions on cross cumulants which guarantee that blind source separation has been performed.

متن کامل

A Review of Independent Component Analysis (ICA) Based on Kurtosis Contrast Function

Independent component analysis (ICA) is a computational mehtod to solve blind source separation (BSS) problem. Different kinds of classic measure can be used for the estimation of nonGaussian sources by ICA. In this paper we review independent componenet analysis (ICA) technique based on Kurtosis contrast function. We briefly present the common independent component analysis algorithms that use...

متن کامل

On Blind Methods in Signal Processing

Blind methods are powerful tools when very weak information is necessary. Although many algorithms can be called blind, in this paper, we focus on blind source separation (BSS) and independent component analysis (ICA). After a discussion concerning the blind nature of these techniques, we review three main points: the separability, the criteria, the algorithms.

متن کامل

Blind signal separation: statistical principles

Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or ‘sources’ from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mutual independence between the signals. The weakness of the assumptions makes it a powerful approach but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004